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An Efficient Numerical Spectral Domain Method to
Analyze a Large Class of Nonreciprocal Planar
Transmission Lines
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Abstract—This paper presents an efficient numerical appli-
cation of the Galerkin method in the spectral domain, (SD), to
the analysis of strip-like/slot-like coplanar transmission lines
embedded in a bianisotropic multilayered medium. The method
is based on the obtaining of the spectral dyadic Green’s func-
tion by the equivalent boundary method (EBM), a suitable third
order extraction technique of the asymptotic behavior of the
Green’s dyad, an enhanced numerical integration scheme and
the use of an adequate contour integral method for searching
zeros in the complex plane. This method, namely the SD-EBM,
has been found to be very suitable to analyse transmission lines
with semiconductor and/or ferrites magnetised at an arbitrary
direction, including the study of magnetostatic wave propaga-
tion phenomena.

I. INTRODUCTION

HE GREAT role played by the nonreciprocal devices

in the microwave technology from early was sup-
ported by an extense theoretical investigation on inho-
mogeneously ferrite loaded waveguide [1]-[3] in a first
period. Furthermore, the notable evolution of ferrite
loaded component technology made possible the devel-
opment of transmission lines including ferrite substrate,
particularly the microstrip line very suitable to be inte-
grated in more complicated systems [4]. Some latter works
were specially devoted to the theoretical analysis and un-
derstanding of the propagating modes in planar lines [5]-
[8]. As a consequence of that, it was suggested how to
build nonreciprocal components (phase shifters, isolators,
circulator . . .) by using microstrips and slot-lines includ-
ing magnetised ferrite substrates. From then on, the meth-
ods of analysis were increasing to make possible the study
of a large class of multilayered planar lines with enhanced
nonreciprocal behavior [9]-[17]. Different analytical or
numerical methods were usually employed to treat these
nonreciprocal structures: quasi-TEM approach [4], [7].
modal expansion [6], [9], magnetic walls conditions [8],
mode-matching [10], [13], [14], network analysis [11],
singular integral equation approach [12] and the speciral
domain technique [15]. This latter method has shown it-
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self to be a widely used and very efficient scheme [18]-
{27], suitable to be easily adapted to treat general planar
structures when appropriate methods to determine the
spectral dyadic Green’s function (SDGF) are available.
According to this, the application of the spectral domain
approach requires the computation of the SDGF as a pre-
vious step. In this way, different approaches to compute
the SDGF can be found in literature, from [21] which
considers ferrite layers magnetised along a fixed transver-
sal orientation, [19] applied to arbitrarily magnetised sub-
strates up to [18], [28] capable to deal with complex bian-
isotropic media. The method developed by the authors in
[28], namely the equivalent boundary method (EBM),
provides some relevant features such as its stationary and
perturbative nature and its closed form in terms of a
straightforward algorithm.

The aim of the present work is to combine the EBM
with the spectral domain technique in order to systemati-
cally pose the eigenvalue dispersive equation of a large
class of planar transmission lines via the application of
the Galerkin moment method in conjunction with an ad-
equate choice of the base of functions. The method de-
veloped in this paper, that is the spectral domain-EBM
(SD-EBM), makes it possible to study the propagation
characteristics of strip-like/slot-like lines including co-
planar multistrips/multislots embedded in a lossy bian-
isotropic multilayered linear medium. Special attention
has been paid to all the numerical aspects concerning the
employment of the SD-EBM. In this way, a study of the
convergence of the method with the number of basis func-
tions (for certain possible orientations of the magne-
tization) is presented, an adequate third-order asymp-
totic extraction of the SDGF is carried out, a suitable
treatment of the tails involved is shown and an efficient
method for searching zeros in the complex plane is dis-
cussed. This numerical treatment has been found very
suitable to achieve reliable numerical data with tolerable
CPU times, becoming specially adequate when the struc-
ture to be analysed involves very thin layers. The SD-
EBM has been used in this work to analyse in detail a
certain microstrip configuration and, as an example, the
propagation characteristics of three asymmetric strips
embedded in a four-layer medium involving a ferrite-
semiconductor magnetised.
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II. METHOD OF ANALYSIS

As is well-known, the dispersive relation of a coplanar
transmission line involving strips/slots embedded in a
mulitilayered bianisotropic medium (as that shown in Fig.
1) can be posed, in the spatial domain, in terms of certain
determinantal equation arising from the application of
Galerkin method to the following operator equation

E(x) = GJ, = SQQ(x = x") - J(x') dx’
on the strips (1)
Jx) = LE, = Sgaﬁ x—x") - Bx') dx'

in the slots

subjected to the corresponding boundary conditions on the
strips/slots. Equation (1) has been posed making use of
the dyadic Green’s operator, G, and the inverse of the
dyadic Green’s operator £, J,, E, being the tangential, (x,
z), components of the current density and the electric field
respectively. A dependence of the type exp j(~k,, z +
ot) will be assumed but not written in all the quantities
involved in the present analysis (k,, stands for the com-
plex propagation constant and w for the angular fre-
quency).

As previously established, the spectral domain analysis
(SDA) applied to the computation of the propagation
characteristics of planar transmission lines, namely to
solving (1), via

o«

~ 1
f(kx) = T S f(X) 28 (kax) dx’ (2)
T J-—»

has shown to be very efficient owing basically to two facts.
Firstly, the SDA makes it possible to turn convolutional
products into algebraic products and secondly, different
methods to compute the SDGF, G, have been reported in
literature. The authors have developed a different ap-
proach, namely the EBM, to compute numerically the
SDGF in [28] based on the Equivalence and Uniqueness
electromagnetic theorems. This method makes use of a
(4 X 4) matrix formulation to obtain the electromagnetic
vector, X; = [E,, E,; H,, H,]]7, inside each layer in terms
of

X(y) = exp (jolQl;y) * X, 3)

X, being a constant vector to be determined according to
the boundary conditions, [@]; a matrix defined in [28]
and related to the characteristics of the ith layer and
exp (jw[@;») a (4 X 4) matrix which can be related to
the eigenvalues and eigenvectors of [(];.

Once (3) is posed for all the layers. the inverse of the
SDGF, L(k,, k,, ), rather than the SDGF, G(k,, k., w),
is made up (taking into account the aforementioned elec-
tromagnetic theorem) by means of certain stationary (2 X
2) [g];,; matrices. These [g]; ; matrices are built in such a
way that they only relate quantities inside the ith layer,
when certain equivalent boundary conditions are imposed
to this layer. These equivalent boundary conditions make

1631

upper electric wall

y=hy
y=hy_{ Ly Lely ginterfoce N—1
y=hy, v Wiy interface M-+1
y=hy T T T interface M
y=hy_{— 2 Ledelel N §interface M—1
H
y =
y=h g ) interface 1
W x| Tl lel, )

lower electric wall

2
Fig. 1. Strip-like coplanar transmission line embedded in a bianisotropic
multilayered medium. The slot-like line can be viewed by inverting the

roles played by the metal and the interface on the internal metallized in-
terface.

it possible to form the L dyadic by linking simpler ma-
trices. Each of these simpler matrices is related only to a
single layer whose two surface fields are fixed. In this
sense the EBM differs from other methods which link
matrices related to layers whose surface fields are free.
The fixed nature of the surface boundary conditions on
each layer implies that the L dyadic is built by means of
stationary (rather than propagating) waves in the direction
normal to the interfaces. The way of linking the [g]; ; ma-
trices to form the L dyadic is shown in [28], where a sys-
tematic and general algorithm (including several internal
metallized interfaces) is presented. This algorithm shows
a well-conditioned numerical behavior and a perturbative
nature arising from the decomposition inside each layer
in stationary waves along the y-direction. The perturba-
tive nature of the method basically accounts for the great-
est importance of the layers closer to the internal metal-
lization. This fact causes the EBM to be rather naumerically
insensitive to the increase of the number of layers and also
it makes possible a direct knowledge of the asymptotic
behavior of the SDGF [28] and its asymptotic equivalent
structure. As a consequence of this, the feasibility to be
generalized, the well-conditioned numerical behavior and
the perturbative nature of the EBM make this method very
suitable to be implemented by computer.

Once the G or L dyadics have been computed following
[28] and taking into account that the presence of a single
internal metallized interfaces makes that these dyadics are
given by

Lk,, k., w) = Lyaa, + L.aa, + L,aa, + L. aa,
“)

—G—(kx’ kz, w) = Gxxaxax + zeaxaz + szazax + Gua:az’
(5)

(1) can be rewritten, making use of the convolution and
Parseval theorems, as

E(k,) = Gk, k;, @) * Ji(k)
Jt(kx) = E(kx, kz: w) * Ez(kx)

The Galerkin method can be now applied to solve the
above equations via an adequate finite expansion on the

on the strips} ©6)
in the slots
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unknown quantities taking into account the edge condition in the spatial domain, that is,

R

N

le

N
Il

with the indices p, g standing for the order of the strips/
slots indistinctly, the index »n for the order of the expan-
sion in each strip/slot, N, for the total number of strips/
slots and Ny for the higher order of the basis function in
the expansion. This expansion is made using the first and
second kind of the Chebychev polynomial [29] (weighted
by the proper function to account for the edge condition)
whose spectral transformed are found to be

Jz, e [ _
EP =17 Jn E‘ kx €xp (kacp) (9)

T (22

~X§m N m+1 2 X

pan§ =" D
(10)

(J,(*) stands for the Bessel function of first kind and nth
order).

The application of the Galerkin moment method to (6),
when the boundary condition (1) is imposed to each basis
function, gives rise to the following indeterminate sys-
tems of equations

exp (Jjkyc,)

Ny ]
=z nZO G g (T - Gk, by )
,ﬁ,,(kx) dk, = 0 on the strips (11)
Ns Ny S
§ 2, S_w (B fne)* - Ty, ks )
. E{n(kx) dk, = 0  in the slots. (12)

Each one of the above system of equations can be rewrit-
ten in matrical form as

Tk, w)] ¢ =0, (13)

“ )
Tom S J [ =2
afs . n < )

w
;oﬁ(kx)]-]m <?q kx>e/(cﬁ‘cq)kr dkx + S

—Uu

— 00

g=1m=90

Ny Nr—a
DY Ay I

on the strips (7)
Ns N

2 X b

p.n

Iz,

p=1n=0

Ns  Nf

2 2 a, EP"

p=1n=0 pn

in the slots (8)
Ns  Nr-1

2 X b,,E,

g=1m=0

[T'] being a squared matrix of N, - (2N; + 1) dimension.
The equation (13) can be viewed as an eigenvalue prob-
Iem in case the value of w is fixed. In this sense, the dis-
persive equation of the structure can be posed as

det [I'tk,, w)] = O, (14)

whose complex solutions k,, (» = 1, * y Niodes)»
namely the different eigenvalues of (13), account for the
complex propagation constant of each mode and the en-
tries of corresponding eigenvector ¢,, are the different coef-
ficients of the expansion of f, or E,.

III. NUMERICAL ASPECTS

Once the eigenvalue problem (13) has been posed, two
main numerical problems arise: a) the numerical compu-
tation of the integrals involved in (11) or (12) and b) the
searching for the complex eigenvalues in (14). Since the
numerical problems related to the strip-like and the slot-
like problems are very similar, only the strip-like problem
will be considered henceforth.

Note that all the integrals appearing in (11) have the
following general form (apart from constants):

pngm ” Wp
F = . Jn —2_ kx G&B(k.xs kzs (.0)

. J <gg k )ej(cpﬁcq)kx dk
m 2 X X

(15)
(o, B stand indistinctly for x or z). The procedure fol-
lowed to treat the numerical integration of (15) basically
resides on certain decomposition in conjunction with an
appropriate asymptotic scheme. Thus, the I'g™ coeffi-
cients can be written as:

(=~

[6)] w
kx>Ga5(kx, k., w)J, <?" kx>e’(“”_”")k" dk, + S J, <—25 kx>[GaB(kx, k,, w)

w
Jn <7p kx> [Gaﬁ(kxw kz, CO) - G;ﬂm( )]J < >€j(c‘p coky dk

® w, Wy o v w,
— k. 1G= 1 J(ep — cqdks g £
+ Su Jn <2 x> aB(kx)Jm <2 kx>e dkx + e Jn 2

—o0 Yy (cp — ek
kx Gocﬂ (kx)Jm —2— kt e/ dkx (16)
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with Ggg(k,) and G,5°(k,) being the asymptotic functions
(not depending on k, and w) of G,4(k,, k;, »») when the
spectral variable, k,, tends to o and —oo respectively.
The integration limit « is chosen in such a way that the
relative error between G,4(k,, k,, ») and its corresponding
asymptotic function is small (usually 10%). It should be
noticed that the particular scheme employed in the nu-
merical integration of (16) has been carried out princi-
pally to compute the SDGF as few times as possible. This
fact can become very relevant since the computational ef-
fort required to obtain the SDGF is usually much greater
than that necessary to comipute the Bessel functions. In
this way, it has been found, after comparing with other
possible schemes, that (16) turns out to be an optimum
way to compute numerically the integrals involved.

The first term of expression (16) is a definite integral
and therefore this term can be successfully integrated by
using a numerical procedure based on Gauss-Legendre
quadratures and checking that the result is not affected
when the order of the quadrature is increased. The second
and third terms of (16) are integrals with infinite limits of
integration but they are calculated following an iterative
application of the numerical method employed for the first
term. Nevertheless, since [G,g(k,, k;, @) — Gi"(k,)] tends
fast to zero (as will be shown in the next section), these
integrals are rapidly convergent. The fourth and fifth
terms, that is the tails, are computed following a different
scheme to be explained later.

As has been mentioned above, the feasibility of the pro-
posed method requires to achieve an adequate asymptotic
behavior of G,4(k,, k,, w). The perturbative nature of the
EBM makes it straightforward to predict the asymptotic
behavior [28], [30] which can be written as:

GE™(tk) = A5 - (k) + BE + % + -0 (A7
GE™(+k,) = AL + ﬁ% (?(’%5 + - (18)
G (ko) = % " <f/i)2 ¥ (Jflif o G0

Note that different asymptotic behaviors have been as-

sumed when the spectral variable tends either to minus
infinity or to plus infinity. This distinction has been made
to account for the most general form of the SDGF. In this
work, an asymptotic behavior of third order for each ele-
ment in the G (+k,) dyadic is retained since this behav-
for would imply to obtain the second and third integral in
(16) (assuming that the + oo integration limits are fixed to
suitable finite values) with three significant digits more
than in case a simpler asymptotic behavior of first order
was employed. Unfortunately, there are only a few simple
cases in which it is possible to find an accessible analyt-
ical procedure for determining all the constants involved
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in expressions (17)-(20) [30]. Nevertheless, the three
constants appearing in the asymptotic expansion of
GZ§ (k) can be obtained in terms of three values of these
functions which correspond to three different larger val-
ues of +k(+k,;, tk,», +k,3). As an example, the fol-
lowing system of three equations is found for the G,
case:

C+
45+ (k) + B+ ;ﬁ = Guky) =12, 3}-
21

The integrals concerning the fourth and fifth terms of
expression (16) turn out to have the following general
form (apart from the corresponding constants)

@, \, (@
(%) - ($%)
u (kx)i

. eij(Cp‘Cq)kx dkx

Kingns = (1" "7 S

(22)

(i = 1, 2, 3). Different treatment is applied to expression
(22) in Appendix depending if (22) refers to interaction
between two different (p # g) or equal strips (p = q).
The analysis shown in the Appendix provides accurate
numerical values of the above integrals with a reduced
computational effort.

As far as the numerical treatment has been developed
at this section, the appearance of singularities along the
integration path of (16) has been neglected. As is well
known, these singularities stem from the real poles ap-
pearing in the SDGF of a lossless transmission line. These
poles account for the propagation constants of the differ-
ent modes in the lossless parallel-plate waveguide which
supports the transmission line and are related to the ap-
pearence of leaky waves in the line. An appropiate treat-
ment of this topic can be found in [31] (in case the wave
propagation has an isotropic nature) where it is also sug-
gested a procedure to overcome the appearance of singu-
larities in the numerical integration. Unfortunately the
treatment to solve this drawback requires the previous
knowledge of the propagation constants in the parallel-
plate waveguide. This knowledge can be straightforward
in the simplest isotropic dielectric case but gets compli-
cated in the case of substrate with magnetised ferrite. The
magnetised ferrite-loaded waveguides show on one hand
a more involved modal spectrum and on the other hand,
it is necessary to investigate the propagation along all the
directions in the (x — z) plane owing to the strong an-
isotropy shown by the wave propagation in this plane. An
efficient approach to compute the propagation constant in
these structures have been recently developed by the au-
thors in [32]. Apart from the above procedure, the draw-
backs in the integration are often avoided by inseiting
losses in the substrates. The present work is not con-
cerned with the investigation of leaky waves and therefore
only the non-radiating zone of the modal spectrum of the
transmission line is taken into account. Future works
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should be devoted to the investigation of leaky waves in
ferrite-loaded transmission lines.

Once the matrix [I'(k,, )] has been built up, another
numerical problem appears relating to the searching for
the complex eigenvalues of (13), namely the zeros of (14).
Now, the most important task is to find an efficient method
to systematically analyse the complex plane. In this way,
the integral method C) described in [33] has been found
to be very suitable for this purpose when the function F(k,)
= det [I'(k,, wsxea}] is assumed to be analytic in the region
of searching. This method makes possible a previous ex-
amination of a circular region in order to determine the
existence of zeros. If the existence of » zeros has been
predicted, these zeros turn out to be the roots of a vth
degree polinomial. The main drawback of the method
could be the inability to deal with meromorphic functions,
nevertheless the zone in which F(k;) becomes mero-
morphic coincides with the radiating modal zone of the
line (which is not treated in this work as has previously
been mentioned).

IV. NUMERICAL RESULTS

At this section, all the numerical aspects concerning the
application of the method exposed above are checked and
discussed. As an example, a lossless microstrip with a
superstrate of magnetised ferrite, as studied in [26], has
been chosen to carry out the numerical discussion. First
of all, the elements of the SDGF (k, and w fixed) for this
structure are plotted in Fig. 2(a)-(c) where three different
magnetizations (parallel to the three main axis) are con-
sidered (notice that in Fig. 2(a) the three cases are super-
imposed). It can be seen from these three figures that the
behavior of G, g(k,, k,, w) for large values of the spectral
variable coincides with that predicted by expressions (17)-
(20). If each magnetization is studied separately it is ob-
served that in case the magnetization is parallel to the
x-axis, Hy = Hya,, the different elements of the SDGF
have a well defined symmetry, that is, Im G,, and Im G,
are even functions of &, and Im G,, is an odd one (real
parts are null). In case the magnetization is assumed to be
parallel to the y-axis, the same behavior as that of the
above case is observed. Note that G,, presents now real
even part distinct to zero. All these properties numerically
observed can be easily obtained from the application of
the reciprocity theorem and/or simple symmetry reason-
ings [32]. If the magnetization is parallel to the z-axis,
there are not any symmetry respect to the spectral vari-
able. Im G,, and Im G,, have weak nonsymmetry (almost
imperceptible in the figures), on the contrary Im G, pre-
sents a very strong nonsymmetry, more relevant if the op-
eration frequency is within the zone of forbidden fre-
quency [34]. The strong nonsymmetry of the spectral zz-
component of the Green’s dyadic makes the correspond-
ing spatial component of this dyadic a complex function
with different behavior in the real and imaginary parts.
Hence, the phase of this complex function shows an in-
volved dependence with the spatial variable, x. The in-
volved behavior or this spatial complex component in
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Fig. 2. Behavior of the different elements of the SDGF: (a) —G,,, (b) —G..
and (c) —G_, for different magnetizations in a microstrip with a ferrite-
superstrate with the following characteristics: 7, = 0.254 mm.. h, = 0.254

mm., hy = 2 mm., ¢, = 12.9, u, = 1, ¢, = 12.6, 47M, = 2750 G., H,
=2750e., 6 = pu3 = 1, w; = 1.016 mm., k. = 0.3 mm~', Freq = 10
GHz. (—): Hy = Hya,, (~~-———- ): Hy = Hya,, (- = ~"—+——): H,
= Hya,.

conjunction with the requirement of £, = 0 on the strip
causes the resulting current density J, to be complex and
to have an involved behavior. This behavior should be
simulated in the finite space provided by the basis func-
tions. The space of functions chosen to solve the disper-
sion equation was formed by the first and second kind of
Chebyshev polynomials, which means that each dimen-
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sion of this space is made up by an odd/even function. |

According to this, it should be rather difficult to form the
nonsymmetric current density in this space of functions
with a reasonable number of basis functions. The non-
symmetry of the current density can be also explained
from physical arguments if it is noticed that there is an
important power flux along the x-direction in the parallel-
plate waveguide which supports the transmission line [32].
The perturbation imposed by the strips prevents the ap-
pearence of x-directed power flux but it should imply
strongly nonsymmetric current density, in other words,
edge-modes [8].

Another relevant numerical fact related to the SDGF to
be discussed is the convenience of using an asymptotic
behavior of third order. It was suggested at the previous
section that this choice made the involved integrals ac-
curately computed. This fact can now be understood if it
is noted of Fig. 3(a)-(c) that the relative error AG, g =
(|Gug — Gig|/|G,pgl) related to the use of a third-
order asymptotic curve-fitting is approximately three or-
ders of magnitude minor than that related to the first-order
asymptotic extraction. The use of a third-order asymptotic
curve-fitting implies to determine the constants appearing
in (17)-(20) and compute the tails shown in the appendix.
This computational effort is completely justified by the
important saving of CPU-time and the accuracy in the ob-
taining of the second and third terms of (16). Extractions
of higher order (which implies more involved analytical
preprocessing and numerical effort to compute the tails)
could be made if a very extreme accuracy is desired.

Next, the convergence of the propagation constant with

the number of basis functions is analysed. The evolution
of the normalised phase constant 3/, is shown in Fig. 4
when the angle of magnetization is varied in'the (x — z)
plane and the frequency is fixed out of the zone of forbid-
den frequencies in the aforementioned microstrip with a
ferrite-superstrate. It is noted of this figure that our nu-
merical results differ from those provided by [26] in pro-
portion to the increase of the number of basis functions,
N; (the total number of basis functions is 2Ny + 1), never-
theless the discrepancy never goes beyond 1.5%. A de-
tailed study of the convergence when different magne-
tizations are considered can be found in Table I. This ta-
ble shows the good convergence appearing in case the
magnetization is contained in the (x — y) plane (¢ = 90°,
6 = 0°, 30°, 60°, 90°). Just five basis functions are re-
quired to achieve a definitive convergence in this case.
The convergence gets a bit worse as far as the projection
of the magnetization in the z-axis becomes larger. Thus,
it is observed that for 6 = 90°, ¢ = 60°, 90° and ¢ =
90°, 8 = 60° the fifth significant digit is not assured with
17 basis functions. With regard to the less good conver-
gence shown by the phase constant in the above case, it
should be interesting to investigate the evolution of the
normalized current density when the number of basis
functions is increased. The current density will be nor-
malized henceforth by making that the coefficient of
higher modulus in the current density expansion is set to
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Fig. 3. Relative error of the different elements of the SDGF with mag-
netizations along the main axis: (a): Hy = Hya,, (b): Hy = Hya, and (c):
H, = Hga, for the configuration of Fig. 2 when either a first-order:
(==——=== ).or a third-order: ( ) asymptotic behaviors are used.

unity. This evolution is plotted in Fig. 5(a)-(b) for J3*™
and J}°™ respectively showing on the one hand certain
poor convergence and on the other hand the predicted
complex nature of these quantities. It should be noticed
the opposite parity of the real and the imaginary part of
both J1°™ and J;°™. This fact implies that the phase of
both components of current varies continuously and
strongly along the strip section. This strong dependence
suggestes that the current wavefronts below the strip are
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Fig. 4. Normalized plane constant when the magnetization is varied in the
(x — 2) plane (f = 90°) for the same configuration of Fig. 2.

TABLE 1
CONVERGENCE OF THE NORMALIZED PHASE CONSTANT WITH THE NUMBER OF
Basis FUNCTIONS FOR SEVERAL ARBITRARILY ORIENTED MAGNETIZATIONS
IN THE CONFIGURATION ANALIZED IN FiG. 2 (FREQ = 10 GHz)

0 = 90°
N; ¢ =0° ¢ = 30° ¢ = 60° ¢ = 90°
0 3.39449 3.37047 3.32535 3.32229
1 3.39449 3.36547 3.30906 3.30447
2 3.38634 3.35677 3.29913 3.29721
3 3.38634 3.35525 3.29265 3.28537
4 3.38634 3.35516 3.29072 3.28057
5 3.38634 3.35490 3.29013 3.27993
6 3.38634 3.35486 3.28942 3.27801
7 3.38634 3.35477 3.28929 3.27798
8 3.38634 3.35474 3.28895 3.27713
¢ =0° ¢ = 90°
N; 0=0° 8 = 30° 0 = 60° = 30° g = 60°
0 3.43337 3.41687 3.40127 3.41016 3.35519
1 3.43337 3.41687 3.40127 3.40748 3.34412
2 3.42724 3.40987 3.39345 3.40174 3.33811
3 3.42724 3.40987 3.39345 3.40003 3.33084
4 3.42724 3.40987 3.39345 3.40001 3.32939
5 3.42724 3.40987 3.39345 3.39969 3.32854
6 3.42724 3.40987 3.39345 3.39966 3.32786
7 3.42724 3.40987 3.39345 3.39955 3.32767
8 3.42724 3.40987 3.39345 3.39953 3.32733

not perpendicular to the direction of propagation, not even
approximately. This fact is in accordance with the pres-
ence of spectral components of the field carrying a non-
zero power in a direction parallel to theirs wavefronts.
Other studies have been carried out for the cases denoted
above as good convergent ones and it has been found that
the degree of good convergence shown by the phase con-
stant is reflected in the current density. The case pointed
out in this work as the most problematic one (namely the
configuration under study when the magnetization is along
the z-axis and the operation frequency is within the for-
bidden frequency zone) has been treated in [24]. The au-
thors of that work seem not to be aware of some numerical
problem related to this critical case and suggest a suffi-
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Fig. 5. Convergence of the components of the current density on the strip
(@): J™ (x) and (b): J°™ (x) with the number of basis functions. The
same configuration of Fig. 2 is considered with Freq = 10 GHz., H, =
Hya..

ciently good convergence in the propagation parameters
just with 9 basis functions. A study of the convergence
concerning the phase constant of the configuration treated
in Fig. 5 of [24] is shown in Table II for two values of
frequency. It has been found an acceptable convergence
in case the frequency is 3.2 GHz but no convergence has
been detected up to 17 basis functions in case frequency
is 4.5 GHz (we have found that this fact is not related to
the appearance of poles close to the k,-axis of integra-
tion). This apparent null convergence is also observed in
the current density plotted in Fig. 6. The curves of this
figure show that the increasing in the number of basis
functions from 15 to 17 has a drastic effect on the behav-
ior of the current density. This fact suggestes that the con-
vergence is still far from being achieved. Thus, the
Chebyshev-type basis functions do not seem to be the most
adequate to deal with this particular case. Future works
should be devoted to a deeper investigation on this sub-
ject.

In the following we restrict ourselves to analyse config-
urations in which the convergence has been properly
checked. In this way, the configuration treated in [26] with
magnetization parallel to the x-axis is now analysed in the
range of forbidden frequencies. The modal spectrum in
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TABLE 11
CONVERGENCE OF THE NORMALIZED PHASE CONSTANT WITH THE NUMBER OF
Basis FUNCTIONS FOR A MICROSTRIP LONGITUDINALLY MAGNETIZED:
h = 1.27 mm., ¢, = 17.5, 4xM; = 2267 G., Hy, = (144 Oe)a,,
AH, =3000e., h, =2.03mm., ¢; = 10.2, h; =20 mm., ¢5 = 1,
w = 0.3 mm ((**) DATA EXTRACTED FROM FIG. 5 OF [24])

k, (mm™")

N Freq = 3.2 GHz Freq = 4.5 GHz

(0.37142 — j0.13555)
(0.36142 — j0.11007)
(0.36339 — j0.10452)
(0.36306 — 70.10533)

0 (0.19444 — j0.13187)
1

2

3

4 (0.36282 — j0.10423)

5

6

7

8

(0.34226 — j0.14754)
(0.22671 — j0.18021)
(0.31038 — j0.14844)
(0.24143 — j0.18897)
(0.29802 — j0.15083)
(0.24992 - j0.19137)
(0.29144 — j0.15286)
(0.25545 — 70.19187)

(0.36303 — j0.10447)
(0.36280 — j0.10417)
(0.36296 ~ j0.10428)
(0.36282 — j0.10412)

ok (0.36 ~ jO.11) 0.22 - j0.18)

. I R | L Il |

0 0.1 0.2 03 0 0.1 02 03
x(mm) x(mm

Fig. 6. Behavior of J;°™ (x) with different number of basis functions for
the configuration of Table II with Freq = 4.5 GHz.

this zone is shown in Fig. 7. The typical electromagnetic
mode (m = 0) appears in the lower zone showing certain

nonreciprocity. In addition, five modes (1 < m =< 5) are

also found just in the positive zone of k, with three rele-
vant characteristics: a) they only appear propagating along
the +z direction, b) the phase constants of these modes
are large and present asymptotic behaviors and ¢) these
modes become radiating approximately below 4.9 GHz.
According to characteristics a) and b), that is, the total
nonreciprocity of these modes and a supposed magneto-
static nature, these modes have been denoted as Unidirec-
tional Magnetostatic Modes (UMM).

Regarding characteristic ¢), it could seem surprising the
fact that these modes radiate laterally whereas the electro-
magnetic mode does not radiate despite of having the
smallest phase constant value. This apparent contradic-
tion can be explained if the anisotropic nature of the wave
propagation in the parallel-plate housing waveguide is
taken into account. In fact, as is well known, radiation of
leaky waves in strip-like structures occurs when a mode
with propagation constant vector k = (k,, k) (k, being the
propagation constant of the line) can be excited in the
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Fig. 7. Propagating modal spectrum for the configuration of Fig. 2 with
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Fig. 8. Propagation constant of the modes reported in Fig. 7 as a function
of the angle 6.

housing waveguide. If the housing waveguide has azi-
muthal symmetry, this means that radiation occurs for all
k, whose real part is less than the propagation constant,
8, of the upper waveguide mode. However, if the housing
waveguide has not azimuthal symmetry this rule is no
longer valid. In this latter case, the existence of a propa-
gating mode in the housing waveguide with propagation
constant 3 > k, in a given direction, does not imply the
existence of other waveguide modes with propagation
constant (k,, k,); B = kzx + k)%, for all k, < B but only for
certain k,. The strong anisotropy of wave propagation in
dielectric-ferrite-dielectric waveguides magnetised at an
arbitrary direction in the (x — z) plane is analyzed in [32]. '

The effect of the varying of the angle of magnetization
in the (x — y) plane for a fixed frequency is plotted in Fig.
8. The curves of this figure show how the electromagnetic
mode is slightly affected by the angle of magnetization
unlike what happens to the UMM’s. The asymptotic be-
havior of these modes at certain intermediate angles of
magnetization is somewhat expected since the microstrip
turns out to be reciprocal in case the external magnetic
biased field is oriented along the y-axis. This fact implies
that the UMM’s can not exist under this condition of rec-
iprocity.
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Fig. 9. (a)-(c): Behavior of the current density for the different modes
shown in Fig. 7 with Freq = 5 GHz.

Valuable information about the nature of the modes can
be extracted from Fig. 9(a)-(c) where the behavior of Im
J37™ and Re J;°™ in all these modes is shown (Re J, =
Im J, = 0). Thus, two essential differences should be ob-
served between the electromagnetic mode and the
UMM’s: a) J7°™ is always positive for m = 0 and passes
through zero in the other cases. b) Ji°™ is negative on
the left side of the strip and positive on the right side for
the electromagnetic mode, this behavior disappearing in

3.7
3.6
B
3.5 £
S g
3.4 (S
3.3
7 9 12 15 18 20
FREQ (GHz)

Fig. 10. Modal propagation parameters for the three fundamental modes
1n a transmission line with a gyrotropic-dielectric-semiconductor-air com-
posite medium and three asymmetric strips above the second layer. #; =
200 pm., ¢, = 12.9, Hy, = (1000 OQers.) a,, n = 10" cm™>, 7 = 1073 5.,
4nM; = 1600 G., hy = 100 pm., €; = 12.6, by = 100 pm., e = 12.3, g3
=0.01(Qmm) ', hy=1Imm.,e =1,¢ =50 um., », =100 pm., ¢,
=275 pm., w, = 150 pm., c3 = 600 pm., w; = 200 um.

the UMM’s. These two differences suggest that the be-
havior of the current density on the strip is basically dis-
tinct in each type of mode, that is, whereas the electro-
magnetic mode presents similar current lines as those of
a quasi-TEM mode, the UMM’s seem to have these cur-
rent lines making so many loops as the value of their in-
dex m indicates. If the current lines are making loops, this
means that V « J = 0 or analogously that V X H = J,
expression which is in accordance with the predicted
magnetostatic nature of the UMM’s. In order to verify
this assertion, numerical computations have been made
showing that V - J for modes with m # 0 is at least two
orders of magnitude less than V - J corresponding to the
electromagnetic mode.

Up to now, just the magnetized ferrite-superstrate mi-
crostrip configuration has been analysed. The method de-
veloped in this work has been also applied to the study of
more involved configurations. As an example Fig. 10
shows the propagation parameters as a function of fre-
quency for the three fundamental modes appearing in a
multilayered transmission line with three asymmetrical
strips. The multilayered medium is composed by four lay-
ers, the first of them being a ferrite with nonnegligible
conductivity magnetised along the x-axis (as a conse-
quence of that, this layer acquires both gyromagnetic and
gyroelectric characteristics), the second layer a dielectric,
the third a semiconductor and the fourth air. A typical
CPU time to achieve five significant digits in the three
propagation parameters corresponding to the three modes
(for a fixed frquency) has found to be 45 seconds in a
CONVEX-220 machine. Apart from this configuration,
certain nonreciprocal slow-wave lines involving asym-
metrical strips or slots have been analysed by the authors
in [35]. As is well known, the presence of very thin layers
in these slow-wave lines makes that the integrals involved
show an extremely slow convergence. Hence the numer-
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ical scheme reported in this work turns out to be specially
suitable in the analysis of these configurations, achieving
accurate numerical results with tolerable CPU times.

V. CONCLUSION

This work presents an efficient numerical application of
the Galerkin method in the spectral domain making use of
the general algorithm for obtaining the SDGF in bian-
isotropic media provided by the EBM. Since in a great
number of practical cases (such as those including several
layers and/or gyroelectric/gyromagnetic characteristics)
the most consuming CPU time is related to the numerous
computations of the SDGF, the numerical scheme pro-
posed in the present work has been chosen in order to
optimize the number of times that the SDGF should be
computed. This optimization has been achieved on the one
hand by extracting a suitable asymptotic curve-fitting to
the SDGF and on the other hand by taking advantage of
certain numerical integration scheme. The asymptotic be-
havior of the SDGF is straigforwardly predicted by the
EBM, the constants related to this asymptotic behavior
turn out to be the solutions of a linear system of three
algebraic equations and the resulting tails are efficiently
computed. The technique developed makes it possible to
analyse with confidence a large class of coplanar trans-
mission lines including several strips or slots embedded
in a multilayered bianisotropic medium. Thus, it is pos-
sible to study from the simpler microstrip/microslot
embedded in a dielectric medium to the much more in-
volved asymmetric strip-like/slot-like coplanar lines
embedded in stratified gyroelectric and/or gyromagnetic
media. The method is also aware of the numerical draw-
backs related to the presence of very thin layers.

Three facts should be emphasized regarding the con-
vergence of the propagation parameters with respect to
the basis functions employed in the expansion of the field/
current density: a) The typical Chebyshev-type basis
functions have shown to be very suitable to study the non-
reciprocal lines in case the external magnetization is as-
sumed to be on a plane perpendicular to the propagation
direction, b) The aforementioned basis functions provide
a slightly worse convergence (but rnostly acceptable)
when the external magnetization has certain component
along the direction of propagation and c) This conver-
gence can become unacceptable for certain critical config-
urations when the magnetization is that of case b) and the
operation frequency is fixed within the frequency forbid-
den region.

The application of the present method to the analysis
of a microstrip with a magnetised-ferrite superstrate has
revealed the appearance of certain unidirectional magne-
tostatic modes. These modes have been found within the
range of forbidden frequencies when the external mag-
netization is on a plane perpendicular to the direction of
propagation.
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APPENDIX
Two cases are considered in the computation of expres-
sion (22):
*prP=q

In this case, the integral (22) becomes

i—1 ®
_2_> S L)o@

Kppmi = ()"l < "

@p

/o N\iTh

= ("t <—> Ky i (X) 23)
Wp

with x = (w,/2)u. The integral K,,, ;(x) is now rewritten

as

Kumi () = S () Jn(@) —iJn @77

X o

" S I (a){m(a) do

X

= Krllm,i(x) + K;l,m,l (JC),

(24)

assuming the following asymptotic behavior, J; (o), of
the Bessel function of order n

The first integral of (24) is numerically computed follow-
ing the same scheme proposed for the computation of the
second and third integral appearing in expression (16).
This integral is very fastly convergent assuming the sug-
gested choice of the limit of integration u. Regarding the
second integral of (24), it can be expressed in terms of
the integral cosine, Ci (x), and integral sine, Si (x), func-
tions as follows

2 +m+1
Klmi) = = | cos <f’——§—‘
-

+ sin <”—i—’;'—f~1 7r>[Si 2xl*!

CcOS hom
) T

+ T . (25)

7r>[Ci Q)+

*p¥+gq
Prior to dealing with this case, it should be noticed from
(22) that
L ;r:;m,i = (__ 1)n e i(K;‘;zqm,i)*
K;tprri,i = (K;:tqm,i)*,
what implies that only K, ; should be treated. The in-
tegration along the real axis k, in K, is transformed
into an integration along the imaginary axis jk, via the
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application of the Cauchy theorem, that is

%Y (2
P Gk Ci
Kumi = |

o = ) (kx)i ejskx dkx

— ] e Jsu S
} 0

o Y oY

Jn (u + .]kx) N Jm (u + ka) N

i 2 2

0 (u + jk)
- e~ dk, (26)

with s = ¢, — ¢,. Note that this last form of the integral
is very fastly convergent due to the presence of the neg-
ative exponential factor e,
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