
1630 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 8, AUGUST 1992

An Efficient Numerical Spectral Domain Method to
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Abstract–This paper presents an efficient numerical appli-

cation of the Galerkin method in the spectral domain, (SD), to

the analysis of strip-like/slot-like coplanar transmission lines
embedded in a bianisotropic multilayered medium. The method

is based on the obtaining of the spectral dyadic Green’s func-
tion by the equivalent boundary method (EBM), a suitable third
order extraction technique of the asymptotic behavior of the
Green’s dyad, an enhanced numerical integration scheme and

the use of an adequate contour integral method for searching
zeros in the complex plane. This method, namely the SD-EBM,
has been found to be very suitable to analyse transmission lines

with semiconductor and/or ferrites magnetised at an arbitrary

direction, including the study of magnetostatic wave propaga-
tion phenomena.

I. INTRODUCTION

T HE GREAT role played by the nonreciprocal devices

in the microwave technology from early was sup-

ported by an extense theoretical investigation on inho-

mogeneously ferrite loaded waveguide [ 1]–[3] in a first

period. Furthermore, the notable evolution of ferrite

loaded component technology made possible the devel-

opment of transmission lines including ferrite substrate,

particularly the microstrip line very suitable to be inte-

grated in more complicated systems [4]. Some latter works

were specially devoted to the theoretical analysis and un-

derstanding of the propagating modes in planar lines [5]-

[8]. As a consequence of that, it was suggested how to

build nonreciprocal components (phase shifters, isolators,

circulator . . .) by using microstrips and slot-lines includ-

ing magnetised ferrite substrates. From then on, the meth-

ods of analysis were increasing to make possible the study

of a large class of multilayered planar lines with enhanced

nonreciprocal behavior [9]–[ 17]. Different analytical or

numerical methods were usually employed to treat these
nonreciprocal structures: quasi-TEM approach [4], [7],

modal expansion [6], [9], magnetic walls conditions [8],

mode-matching [10], [13], [14], network analysis [1 1],

singular integral equation approach [12] and the spectral

domain technique [15]. This latter method has shown it-
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self to be a widely used and very

[27], suitable to be easily adapted

efficient scheme [18]-

to treat general planar

structures when appropriate methods to determine the

spectral dyadic Green’s function (SDGF) are available.

According to this, the application of the spectral domain

approach requires the computation of the SDGF as a pre-

vious step. In this way, different approaches to compute

the SDGF can be found in literature, from [21] which

considers ferrite layers magnetised along a fixed transver-

sal orientation, [19] applied to arbitrarily magnetised sub-

strates up to [18], [28] capable to deal with complex bian-

isotropic media. The method developed by the authors in

[28], namely the equivalent boundary method (EBM),

provides some relevant features such as its stationary and

perturbative nature and its closed form in terms of a

straightforward algorithm.

The aim of the present work is to combine the EBM

with the spectral domain technique in order to systemati-

cally pose the eigenvalue dispersive equation of a large

class of planar transmission lines via the application of

the Galerkin moment method in conjunction with an ad-

equate choice of the base of functions. The method de-

veloped in this paper, that is the spectral domain-EBM

(SD-EBM), makes it possible to study the propagation

characteristics of strip-likefslot-like lines including co-

planar multistrips/multislots embedded in a lossy bian-

isotropic multilayered linear medium. Special attention

has been paid to all the numerical aspects concerning the

employment of the SD-EBM. In this way, a study of the

convergence of the method with the number of basis func-

tions (for certain possible orientations of the magne-

tization) is presented, an adequate third-order asymp-

totic extraction of the SDGF is carried out, a suitable

treatment of the tails involved is shown and an efficient

method for searching zeros in the complex plane is dis-

cussed. This numerical treatment has been found very

suitable to achieve reliable numerical data with tolerable

CPU times, becoming specially adequate when the struc-

ture to be analysed involves very thin layers. The SD-

EBM has been used in this work to analyse in detail a

certain microstrip configuration and, as an example, the

propagation characteristics of three asymmetric strips

embedded in a four-layer medium involving a ferrite-

semiconductor magnetised.
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II. METHOD OF ANALYSIS

As is well-known, the dispersive relation of a coplanar

transmission line involving stripsislots embedded in a

multilayered bianisotropic medium (as that shown in Fig.

1) can be posed, in the spatial domain, in terms of certain

detertninantal equation arising from the application of

Galerkin method to the following operator equation

sEt(x) =gJt = #’(x – x’) “ .lt(x’) (2C’)
on the strips

1

(1)

J,(x) = SEt =
!

S(x –x’) “ Er(x’)dx’
Q

in the slots )

subjected to the corresponding boundary conditions on the

strips/slots. Equation (1) has been poseld making use of

the dyadic Green’s operator, ~, and the inverse of the
.

dyadic Green’s operator $, Jt, E, being the tangential, (x,

z), components of the current density and the electric field
respectively. A dependence of the type ‘exp j ( – k:, z +

cd) will be assumed but not written in all the quantities

involved in the present analysis (kz, stands for the com-
plex propagation constant and u for the angular fre-

quency).

As previously established, the spectral domain analysis

(SDA) applied to the computation of the propagation

characteristics of planar transmission lines, namely to

solving (l), via

~(kX) = ~
!

~m ~~ ~(x) exp (jkXx) h, (2)

has shown to be very efficient owing basically to two facts.

Firstly, the SDA makes it possible to turn convolutional

products into algebraic products and secondly, different

methods to compute the SDGF, ~, have been reported in

literature. The authors have developed a different ap-

proach, namely the EBM, to compute numerically the

SDGF in [28] based on the Equivalence and Uniqueness

electromagnetic theorems. This method makes use of a

(4 x 4) matrix formulation to obtain the electromagnetic

vector, Xi = [~X,i l?Z,i ~X,i ~Zi] ~, inside each layer in terms

of

Xi(y) = exp (j@[Q]~y) “ X~,i, (3)

XO,i being a constant vector to be determined according to

the boundary conditions, [Q]i a matrix defined in [28]

and related to the characteristics of the ith layer and

exp ( @[Q]i y) a (4 x 4) matrix which can be related to

the eigenvalues and eigenvectors of [Q]i.

Once (3) is posed for all the layers,, the inverse of the

SDGF, ~(k., k,, co), rather than the S’DGF, ~(k., k<, LO),

is made up (taking into account the aforementioned elec-

tromagnetic theorem) by means of certain stationary (2 x

2) ~]i, ~ matrices. These [g]i, j matrices are built in such a

way that they only relate quantities inside the ith layer,

when certain equivalent boundaq conditions are imposed

to this layer. These equivalent boundary conditions make

upper electric wall

~:l~_,EE~interface N-1

y=h~+ interface M+l

y=h~ interface M

interface M–1

Ha —.,

Fig. 1. Strip-like coplanar transmission line embedded in a bianisotropic
multilayered medium. The slot-like line can be viewed by inverting the
roles played by the metal and the interface on the internal metallized in-
terface.

it possible to fcmn the ~ dyadic by linking simpler ma-

trices. Each of these simpler matrices is related only to a

single layer whose two surface fields are fixed. In this

sense the EBM differs from other methods which link

matrices relatecl to layers whose surface fields are free.

The fixed nature of the surface boundary conditions on

each layer implies that the ~ dyadic is built by means of

stationary (rather than propagating) waves in the direction

normal to the interfaces. The way of linking the [g]i, ~ ma-

trices to form the ~ dyadic is shown in [28], where a sys-

tematic and general algorithm (including several internal

metallized interfaces) is presented. This algorithm shows

a well-conditioned numerical behavior and a perttn-bative

nature arising from the decomposition inside each layer

in stationary waves along the y-direction. The perturba-

tive nature of the method basically accounts for the great-

est importance of the layers closer to the internal nlettd-

lization. This fact causes the E13M to be rather numerically

insensitive to the increase of the number of layers and also

it makes possible a direct knowledge of the asymptotic

behavior of the SDGF [28] and its asymptotic equivalent

structure. As a consequence of this, the feasibility to be

generalized, the well-conditioned numerical behavior and

the perturbative ~ature of the EBM make this method very

suitable to be implemented by computer.

Once the ~ or ~ dyadics have been computed following

[28] and taking into account that the presence of a single

internal metal] ized interfaces makes that these dyadics are

given by

~(kr, k,, co) = Lnaxax + Lx,axaz + Lwa,ax + Lza,az

(4)

(5)

(1) can be rewritten, making use of the convolution and

Parseval theorems, as

l?,(kX) = ~(kx, k,, Q) . ~,(k,) 1“on the strips (6)

Jt(kX) = ~(kx, k,, LO) “ ~,(k.) in the slots

The Galerkin method can be now applied to solve the

above equations via an adequate finite expansion on the
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unknown quantities taking into account the edge condition in the spatial domain, that is,

with the indices p, q standing for the order of the stripsl

slots indistinctly, the index n for the order of the expan-

sion in each strip/slot, N, for the total number of strips/

slots and Nf for the higher order of the basis function in

the expansion. This expansion is made using the first and

second kind of the Chebychev polynomial [29] (weighted

by the proper function to account for the edge condition)

whose spectral transformed are found to be

(9)

(10)

(.J.(” ) stands for the Bessel function of first kind and nth

order).

The application of the Galerkin moment method to (6),

when the boundary condition (1) is imposed to each basis

function, gives rise to the following indeterminate sys-

tems of equations

“ ~f.(k.) dkx = O on the strips (11)

. ~ f.(kX) dkX = O in the slots. (12)

Each one of the above system of equations can be rewrit-

ten in matrical form as

[r(k,, cd)] “ c = o, (13)

(7)on the strips

in the slots (8)

[r] being a squared matrix of N, “ (2Nf + 1) dimension.

The equation (13) can be viewed as an eigenvalue prob-

lem in case the value of a is fixed. In this sense, the dis-

persive equation of the structure can be posed as

det [r(k,, u)] = O, (14)

whose complex solutions k:,, (v = 1, 0 “ - , N~O&~),

namely the different eigenvalues of (13), account for the

complex propagation constant of each mode and the en-

tries of corresponding eigenvector $,, are the different coef-

ficients of the expansion of j, or E,.

III. NUMERICAL ASPECTS

Once the eigenvalue problem (13) has been posed, two

main numerical problems arise: a) the numerical compu-

tation of the integrals involved in (11) or (12) and b) the

searching for the complex eigenvalues in (14). Since the

numerical problems related to the strip-like and the slot-

like problems are very similar, only the strip-like problem

will be considered henceforth.

Note that all the integrals appearing in (11) have the

following general form (apart from constants):

“ JU,
()

; ,X ~ j(cp - cdkx d,
x (15)

(CY, ~ stand indistinctly for x or z). The procedure fol-

lowed to treat the numerical integration of (15) basically

resides on certain decomposition in conjunction with an

appropriate asymptotic scheme. Thus, the 17~~q~coeffi-

cients can be written as:

‘k+ ~;Ja[~kxj[Ga~Ck.,k,>~l
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with G~8(kX) and G;6@(kX) being the asymptotic functions

(not depending on k, and ~) of G.O(kC, k,, Q) when the

spectral variable, kX, tends to m and – co respectively.

The integration limit u is chosen in such a way that the

relative error between GaD(kX, kz, u) and its corresponding

asymptotic function is small (usually ILO% ). It should be

noticed that the particular scheme employed in the nu-

merical integration of (16) has been (carried out princi-

pally to compute the SDGF as few times as possible. This

fact can become very relevant since the computational ef-

fort required to obtain the SDGF is usually much greater

than that necessary to compute the Bessel functions. In

this way, it has been found, after comparing with other

possible schemes, that (16) turns out to be an optimum
way to compute numerically the integrals involved.

The first term of expression (16) is a definite integral

and therefore this term can be successfully integrated by

using a numerical procedure based on Gauss-Legendre

quadrature and checking that the result is not affected

when the order of the quadrature is increased. The second

and third terms of ( 16) are integrals with infinite limits of

integration but they are calculated following an iterative

application of the numerical method employed for the first
term. Nevertheless, since [GU@(kX,k,, co) – G~Prn(kX)l tends

fast to zero (as will be shown in the next section), these

integrals are rapidly convergent. The fourth and fifth

terms, that is the tails, are computed fc)llowing a different

scheme to be explained later.

As has been mentioned above, the feasibility of the pro-

posed method requires to achieve an adequate asymptotic

behavior of Ga8(kX, k,, LO). The perturbative nature of the

EBM makes it straightforward to predict the asymptotic

behavior [28], [30] which can be written as:

(18)

A: B;
G;@(+-kX) = ~ + —

c;——. . .
_ . (+kX)2 + (fkX)3 + “

(20)

Note that different asymptotic behaviors have been as-

sumed when the spectral variable tends either to minus

infinity or to plus infinity. This distinction has been made

to account for the most general form of the SDGF. In this

work, an asymptotic behavior of third order for each ele-

ment in the Gj$ ( ~ kX) dyadic is retained since this behav-

ior would imply to obtain the second and third integral in

(16) (assuming that the f co integration limits are fixed to
suitable finite values) with three significant digits more

than in case a simpler asymptotic behavior of first order

was employed. Unfortunately, there are only a few simple

cases in which it is possible to find an accessible analyt-

ical procedure for determining all the constants involved

in expressions (17)-(20) [30]. Nevertheless, the three

constants appearing in the asymptotic expansion of

Gf,~(kX) can be obtained in terms of three values of these

functions which correspond to three different larger val-

ues of ~kX( & kX,l, +kX,2, +kX,3). As an example, the fol-

lowing system of three equations is found for the G:

case:

A; “ (kX,,) -+ B: + ~ = G~(kX,,) i= 1,2,3.
X,t 1

(21)

The integrads concerning the fourth and fifth terms of

expression (16) turn out to have the following general

form (apart from the corresponding constants)

[. J+NJ+QX)K;nqm,i=(a:l)”+m-i
u (kX)i

~fj(cp – %)kx &
x (22)

(i = 1, 2, 3). Different treatment is applied to expression

(22) in Appendix depending if (22) refers to interaction

between two different (p # q) or equal strips (p = q).

The analysis shown in the Appendix provides accurate

numerical vah.tes of the above integrals with a reduced

computational effort.

As far as the numerical treatment has been developed

at this section, the appearance of singularities along the

integration path of (16) has been neglected. As is well

known, these singularities stem from the real poles ap-

pearing in the SDGF of a lossless transmission line. These

poles account for the propagation constants of the differ-

ent modes in the lossless parallel-plate waveguide which

supports the transmission line and are related to the ap-

pearance of leaky waves in the line. An appropriate treat-

ment of this topic can be found in [31] (in case the wave

propagation has an isotropic nature) where it is also sug-

gested a procedure to overcome the appearance of singu-

larities in the numerical integration. Unfortunately the

treatment to solve this drawback requires the previous

knowledge of the propagation constants in the parallel-

plate waveguide. This knowledge can be straightforward

in the simplest isotropic dielectric case but gets compli-

cated in the case of substrate with magnetised ferrite. The

magnetised fierrite-loaded waveguides show on one hand

a more involved modal spectrum and on the other hand,

it is necessary to investigate the propagation along all the

directions in the (x – z) plane owing to the strong an-

isotropy shown by the wave propagation in this plane. An

efficient approach to compute the propagation constant in
these structures have been recently developed by the au-

thors in [32], Apart from the above procedure, the draw-

backs in the integration are often avoided by inserting

losses in the substrates. The present work is not con-

cerned with the investigation of leaky waves and therefore

only the non-radiating zone of the modal spectrum of the

transmission line is taken into account. Future works
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should be devoted to the investigation of leaky waves in

ferrite-loaded transmission lines.

Once the matrix [r(kZ, u)] has been built up, another

numerical problem appears relating to the searching for

the complex eigenvalues of (13), namely the zeros of (14).

Now, the most important task is to find an efficient method

to systematically analyse the complex plane. In this way,

the integral method C) described in [33] has been found

to be very suitable for this purpose when the function F(kZ)

= det [r(k,, tifixed)] is assumed to be analytic in the region
of searching. This method makes possible a previous ex-

amination of a circular region in order to determine the

existence of zeros. If the existence of v zeros has been

predicted, these zeros turn out to be the roots of a vth

degree polynomial. The main drawback of the method

could be the inability to deal with mesomorphic functions,

nevertheless the zone in which F (kz) becomes meso-

morphic coincides with the radiating modal zone of the

line (which is not treated in this work as has previously

been mentioned).

IV. NUMERICAL RESULTS

At this section, all the numerical aspects concerning the

application of the method exposed above are checked and

discussed. As an example, a lossless microstrip with a

superstrata of magnetised ferrite, as studied in [26], has

been chosen to carry out the numerical discussion. First

of all, the elements of the SDGF (IcZand u fixed) for this

structure are plotted in Fig. 2(a)–(c) where three different

magnetizations (parallel to the three main axis) are con-

sidered (notice that in Fig. 2(a) the three cases are super-

imposed). It can be seen from these three figures that the

behavior of Ga,B(kX, kz, w) for large values of the spectral

variable coincides with that predicted by expressions (17)–

(20). If each magnetization is studied separately it is ob-

served that in case the magnetization is parallel to the

x-axis, Ho = Ho aX, the different elements of the SDGF

have a well defined symmetry, that is, Im GXXand Im GZZ

are even functions of kX and Im G,Z is an odd one (real

parts are null). In case the magnetization is assumed to be

parallel to the y-axis, the same behavior as that of the

above case is observed. Note that GXZpresents now real

even part distinct to zero. All these properties numerically

observed can be easily obtained from the application of

the reciprocity theorem and/or simple symmetry reason-

ings [32]. If the magnetization is parallel to the z-axis,

there are not any symmetry respect to the spectral ~ari-

able. Im Gn and Im GXZhave weak nonsymmetry (almost

imperceptible in the figures), on the contra~ Im GZZpre-

sents a very strong nonsymmetry, more relevant if the op-

eration frequency is within the zone of forbidden fre-

quency [34]. The strong nonsymmetry of the spectral zz-

component of the Green’s dyadic makes the correspond-

ing spatial component of this dyadic a complex function

with different behavior in the real and imaginary parts.

Hence, the phase of this complex function shows an in-

volved dependence with the spatial variable, x. The in-

volved behavior or this spatial complex component in
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Fig. 2. Behavior of the different elements of the SDGF: (a) – GU, (b) – G.,

and (c) – G.Z for different magnetizations in a microstnp with a ferrite-

superstrate with the following characteristics: h, = 0.254 mm., h, = 0.254
mm., h, = 2 mm., 61 = 12.9, PI = 1, C2 = 12.6, 4rrM~ = 2750 G., HO
= 2750e., Cq = K3 = 1, OJ{ = 1.016 mm., k: = 0.3 mm-’, Freq = 10
GHz. (—):HO =HOaX, (-------):HO =HoaY, (-. -.-. —.–. —):HO
= Hoaz.

conjunction with the requirement of El “= O on the strip

causes the resulting current density Jt to be complex and

to have an involved behavior. This behavior should be

simulated in the jinite space provided by the basis func-

tions. The space of functions chosen to solve the disper-

sion equation was formed by the first and second kind of

Chebyshev polynomials, which means that each dimen-
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sion of this space is made up by an oddleven function.
According to this, it should be rather difficult to form the
nonsymmetric current density in this space of functions
with a reasonable number of basis functions. The non-
symrnet~ of the current density can be also explained
from physical arguments if it is noticed that there is an
important power flux along the x-direction in the parallel-
plate waveguide which supports the transmission line [32].
The perturbation imposed by the strips prevents the ap-
pearance of x-directed power flux but it should imply
strongly nonsymmetric current density, in other words,
edge-modes [8].

Another relevant numerical fact related to the SDGF to
be discussed is the convenience of using an asymptotic
behavior of third order. It was suggested at the previous
section that this choice made the involved integrals ac-
curately computed. This fact can now be understood if it
is noted of Fig. 3(a)–(c) that the relative error A G.,P =
( IG.,d – G$,~ \ / IGa,B\) related to the use of a third-
order asymptotic curve-fitting is approximately three or-
ders of magnitude minor than that related to the first-order
asymptotic extraction. The use of a third-order asymptotic
curve-fitting implies to determine the constants appearing
in (1‘7)–(20) and compute the tails shown in the appendix.
This computational effort is completely justified by the
important saving of CPU-time and the accuracy in the ob-
taining of the second and third terms of (16). Extractions
of higher order (which implies more involved analytical
preprocessing and numerical effort to compute the tails)
could be made if a very extreme accuracy is desired.

Next, the convergence of the propagation constant with
the number of basis functions is analysed. The evolution
of the normalised phase constant B/60 is shown in Fig. 4
when the angle of magnetization is varied in the (x – Z)
plane and the frequency is fixed out of the zone of forbid-
den frequencies in the aforementioned microstrip with a
ferrite-superstrate. It is noted of this figure that our nu-
merical results differ from those provided by [26] in pro-
portion to the increase of the number of basis functions,
Nf (the total number of basis functions is 2Nf + 1), never-
theless the discrepancy never goes beyond 1.5 %. A de-
tailed study of the convergence when different magne-
tizations are considered can be found in Table I. This ta-
ble shows the good convergence appearing in case the
magnetization is contained in the (x – y) plane (~ = 90°,
0 = 0°, 30°, 60°, 90°). Just five basis functions are re-
quired to achieve a definitive convergence in this case.
The convergence gets a bit worse as far as the projection
of the magnetization in the z-axis becomes larger. Thus,
it is observed that for 0 = 90°, @ = 60°, 90° and 4 =
90°, 0 = 60° the fifth significant digit is not assured with
17 basis functions. With regard to the less good conver-
gence shown by the phase constant in the above case, it
should be interesting to investigate the evolution of the
normalized current density when the number of basis
functions is increased. The current density will be nor-
malized henceforth by making that the coefficient of
higher modulus in the current density expansion is set to

1~RANSMISSION LINES 1635

,@3~
5 10 15 25 30

kx(mmzp)

(a)

AGa8 1 ——. .—— —.- ——- -—- -—- -——

0.1

I n-6 I I I I
,“

5 10 15 2f) 25 30
kx(mm- )

(b)

l“”!

‘ u –30 –20” -~~mm_ly 20 30

x

(c)

Fir. 3. Relative error of the different elements of the SDGF with mag-
netizations along the main axis: (a): Z& = Hoa., (b): HO = HO ay and (c~:
Ho = Hoaz for the configuration of Fig. 2 when either a first-order:

(-------) or a third-orden (—) asymptotic behaviors are used.

unity. This evolution is plotted in Fig. 5(a)–(b) for .l~”’”
and .l~m” respectively showing on the one hand certain
poor convergence and on the other hand the predicted
complex nature of these quantities. It should be noticed
the opposite parity of the real and the imaginary part of
both .l~m and ~~m”. This fact implies that the phase of
both components of current varies continuously and
strongly along the strip section. This strong dependence
suggestes that the current wavefronts below the strip are
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Fig. 4. Normalized plane constant when the magnetization is varied in the

(x – z) plane (6 = 90°) for the same configuration of Fig. 2.

TABLE I

CONVERGENCE OF THE NORMALIZED PHASE CONSTANT WITH THE NUMBER OF
BASIS FUNCTIONS FOR SEVERAL ARBITRARILY ORIENTED MAGNETIZATIONS

IN THE CONFIGURATION ANALIZED IN FIG. 2 (FREQ = 10 GHz)

9 = 90°

o 3.39449 3.37047 3.32535 3.32229
1 3.39449 3.36547 3.30906 3.30447
2 3.38634 3.35677 3.29913 3.29721
3 3.38634 3.35525 3.29265 3.28537
4 3.38634 3.35516 3.29072 3.28057
5 3.38634 3.35490 3.29013 3.27993
6 3.38634 3.35486 3.28942 3.27801
7 3.38634 3.35477 3.28929 3.27798
8 3.38634 3.35474 3.28895 3.27713

@=oo + = 900

Nf 0=0° e = 30° 0 = 60° @= 30° 0 = 60°

0 3.43337 3.41687 3.40127 3.41016 3.35519
1 3.43337 3.41687 3.40127 3.40748 3.34412
2 3.42724 3.40987 3.39345 3.40174
3

3.33811
3.42724 3.40987 3.39345 3.40003

4
3.33084

3.42724 3.40987 3.39345 3.40001 3.32939
5 3.42724 3.40987 3.39345 3.39969 3.32854
6 3.42724 3.40987 3.39345 3.39966 3.32786
7 3.42724 3.40987 3.39345 3.39955
8

3.32767
3.42724 3.40987 3.39345 3.39953 3.32733

not perpendicular to the direction of propagation, not even

approximate y. This fact is in accordance with the pres-

ence of spectral components of the field carrying a non-

zero power in a direction parallel to theirs wavefronts.

Other studies have been carried out for the cases denoted

above as good convergent ones and it has been found that

the degree of good convergence shown by the phase con-

stant is reflected in the current density. The case pointed

out in this work as the most problematic one (namely the

configuration under study when the magnetization is along

the z-axis and the operation frequency is within the for-

bidden frequency zone) has been treated in [24]. The au-

thors of that work seem not to be aware of some numerical

problem related to this critical case and suggest a suffi-
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o 0.2 0.4 0.6 0.8 1
x(mm)

(b)

Fig. 5. Convergence of the components of the current density on the strip

(a): J?’’” (x) and (b): J:”” (x) with the number of basis functions. The

same configuration of Fig. 2 is considered with Freq = 10 GHz., Ho =
HOa,.

ciently good convergence in the propagation parameters

just with 9 basis functions. A study of the convergence

concerning the phase constant of the configuration treated

in Fig. 5 of [24] is shown in Table II for two values of

frequency. It has been found an acceptable convergence

in case the frequency is 3.2 GHz but no convergence has

been detected up to 17 basis functions in case frequency

is 4.5 GHz (we have found that this fact is not related to

the appearance of poles close to the kX-axis of integra-

tion). This apparent null convergence is also observed in

the current density plotted in Fig. 6. The curves of this

figure show that the increasing in the number of basis

functions from 15 to 17 has a drastic effect on the behav-

ior of the current density. This fact suggestes that the con-

vergence is still far from being achieved. Thus, the

Chebyshev-type basis functions do not seem to be the most

adequate to deal with this particular case. Future works

should be devoted to a deeper investigation on this sub-

ject.

In the following we restrict ourselves to analyse config-

urations in which the convergence has been properly

checked. In this way, the configuration treated in [26] with

magnetization parallel to the x-axis is now analysed in the

range of forbidden frequencies. The modal spectrum in
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TABLE II

CONVERGENCEOF THE NORMALIZED PHASE CONSTANT WITH THE NUMBER OP
BASIS FUNCTIONS FORA MICROSTRIP LONGITUDINALLY MAGNETIZED:
h, = 1.27 mm., ~1 = 17.5, 4~M, =2267 G.. EIO=(1440e)aZ,

AHO = 3000e., ha = 2.03 mm., e2 = 10.2, hq = 20 mm., 63 = 1,

@ = 0.3 mm ((**) DATA EXTRACTED FROM FIG. 5 OF [24])

kz (mm-’)

N Freq = 3.2 GI-Iz Frcq = 4.5 GHz

o (0.37142 – jO.13555) (0.19444 – jO.13187)

1 (0.36142 – jO.11007) (0.34226 – jO. 14754)

2 (0.36339 – jO.10452) (0.22671 – jO.18021)
3 (0.36306 – jO. 10533) (0.3 1038 – jO. 14844)
4 (0.36282 – jO.10423) (0.24143 – jO.18897)

5 (0.36303 - jO. 10447) (0.29802 – jO. 15083)

6 (0.36280 - jO.10417) (0.24992 - jO.19137)

7 (0.36296 - jO.10428) (0.29144 - jO.15286)

8 (0.36282 - jO.10412) (0.25545 - jO.19187)

** (0.36 - jO.11) (().22 - jO.18)

20 I I I I

u
ReJz I

,

–20 -
------ Nf=7

— Nf=8

–40 -

, , I

o 0.1 0.2 0.3
x(mm)

20

0

–20

–40

nImJz /
,,

[7

/ !,,- ,.- ,.- ,
--- ‘..

0 0.1 0.2 0.3
x(mm)

Fig. 6. Behavior of .f~”” (x) with different number of basis functions for

the configuration of Table 11 with Freq = 4.5 GHz.

this zone is shown in Fig. 7. The typical electromagnetic

mode (M = O) appears in the lower zome showing certain

nonreciprocity. In addition, five modes (1 s m s 5) are

also found just in the positive zone of kZ with three rele-

vant characteristics: a) they only appear propagating along

the +Z direction, b) the phase constants of these modes

are large and present asymptotic behaviors and c) these

modes become radiating approximately below 4.9 GHz.

According to characteristics a) and b), that is, the total

nonreciprocity of these modes and a supposed magneto-

static nature, these modes have been denoted as Unidirec-

tional Magnetostatic Modes (UMM).

Regarding characteristic c), it could seem surprising the

fact that these modes radiate laterally whereas the electro-

magnetic mode does not radiate despite of having the

smallest phase constant value. This apparent contradic-
tion can be explained if the anisotropic nature of the wave

propagation in the parallel-plate housing waveguide is

taken into account. In fact, as is well known, radiation of

leaky waves in strip-like structures occurs when a mode

with propagation constant vector k = (k., Q (I%Zbeing the

propagation constant of the line) can be excited in the

15

-10

P ~

/

lrrl==5

T
E 4

E (UMbO

-N 3
X5

2
Data from [26]

1
\

o --._ -”r___T-_---____ .-__-,_-+ ._--+ ._-r-\

45678910
Freq(GHz)

Fig. 7. Propagating modal spectrum for the configuration of Fig,

HO= HOax.

/711e(UMM)

2 with

klllll
o -u ‘Y---------- ---------------------------------

90 60 30 0
@(degrees)

Fig. 8. Propagation constant of the modes reported in Fig. 7 as a function

of the angle O.

housing waveguide. If the housing waveguide has azi-

muthal symmetry, this means that radiation occurs for all

k, whose real part is less than the propagation constant,

~, of the upper waveguide mode. However, if the housing

waveguide has not azimuthal symmetry this rule is no

longer valid. In this latter case, the existence of a propa-

gating mode in the housing waveguide with propagation

constant P > kZ in a given direction, does not imply the

existence of other waveguide modes with propagation

constant (kX, kz); 62 = ~ + k:, for all k, < b but only for

certain kz. Thle strong anisotropy of wave propagation in

dielectric-ferrite-dielectric waveguides magnetised at an

arbitrary direetion in the (X – z) plane is analyzed in [34.
The effect of the varying of the angle of magnetization

in the (x – y) plane for a fixed frequency is plotted in Fig.

8. The curves of this figure show how the electromagnetic

mode is slightly affected by the angle of magnetization

unlike what happens to the UMM’s. The asymptotic- be-
havior of these modes at certain intermediate angles of

magnetization is somewhat expected since the microstrip

turns out to be reciprocal in case the external magnetic

biased field is oriented along the y-axis. This fact implies

that the UMM’S can not exist under this condition of rec-

iprocity.
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Fig. 9. (a)-(c): Behavior of the current density for the different modes
shown in Fig. 7 with Freq = 5 GHz.

Valuable information about the nature of the modes can

be extracted from Fig. 9(a)-(c) where the behavior of lm

.l~m” and Re ~~m” in all these modes is shown (Re JI =

Im .lZ = O). Thus, two essential differences should be ob-

served between the electromagnetic mode and the

UMM’S: a) J,‘“m’ is always positive form = O and passes

through zero in the other cases. b) Jym is negative on

the left side of the strip and positive on the right side for

the electromagnetic mode, this behavior disappearing in

3.7

3.6
‘.

>

3.4 -----------------

r I I I I I

79 15 18 20
Fk;Q (GHz)

2

1.8

‘F
1.6<

m
-cl

1.45

1.2

Fig. 10. Modal propagation parameters for the three fundamental modes
m a transmission line with a gyrotroplc-dielectric-semiconductor-air com-
posite medium and three asymmetric strips above the second layer. hl =
200 #m., e, = 12.9, HO = (1000 Oers.) ax, n = 1014 cm-3, T = 10-13 s.,
4TM, = 1600 G., !-q = 100 pm., Cz = 12.6, Its = 100 pm., e~ = 12.3, 03

= 0.01 (flmm)-’, hi = 1 mm., EJ = 1, c, = 50~m., 0, = 100 pm., Cz

= 275 pm., ti2 = 150 pm., C3 = 600 yin., U3 = 200 pm.

the UMM’s. These two differences suggest that the be-

havior of the current density on the strip is basically dis-

tinct in each type of mode, that is, whereas the electro-

magnetic mode presents similar current lines as those of

a quasi-TEM mode, the UMM’S seem to have these cur-

rent lines making so many loops as the value of their in-

dex m indicates. If the current lines are making loops, this

means that V “ J = O or analogously that V x H = J,

expression which is in accordance with the predicted

magnetostatic nature of the UMM’s. In order to verify

this assertion, numerical computations have been made

showing that V “ J for modes with m # O is at least two

orders of magnitude less than V “ J corresponding to the

electromagnetic mode.

Up to now, just the magnetized ferrite-superstrate mi-

crostrip configuration has been analysed. The method de-

veloped in this work has been also applied to the study of

more involved configurations. As an example Fig. 10

shows the propagation parameters as a function of fre-

quency for the three fundamental modes appearing in a

multilayered transmission line with three asymmetrical

strips. The multilayered medium is composed by four lay-

ers, the first of them being a ferrite with nonnegligible

conductivity magnetised along the x-axis (as a conse-

quence of that, this layer acquires both gyromagnetic and

gyroelectric characteristics), the second layer a dielectric,
the third a semiconductor and the fourth air. A typical

CPU time to achieve five significant digits in the three

propagation parameters corresponding to the three modes

(for a fixed frquency) has found to be 45 seconds in a

CONVEX-220 machine. Apart from this configuration,

certain nonreciprocal slow-wave lines involving asym-

metrical strips or slots have been analysed by the authors

in [35]. As is well known, the presence of very thin layers

in these slow-wave lines makes that the integrals involved

show an extremely slow convergence. Hence the numer-
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ical scheme reported in this work turns out to be specially

suitable in the analysis of these configurations, achieving

accurate numerical results with tolerable CPU times.

V. CONCLUSION

This work presents an efficient numerical application of

the Galerkin method in the spectral domain making use of

the general algorithm for obtaining the SDGF in bian-

isotropic media provided by the EBM. Since in a great

number of practical cases (such as those including several

layers and/or gyroelectric/gyromagnetic characteristics)

the most consuming CPU time is related to the numerous

computations of the SDGF, the numerical scheme pro-

posed in the present work has been chosen in order to

optimize the number of times that the SDGF should be

computed. This optimization has been achieved on the one

hand by extracting a suitable asymptotic curve-fitting to

the SDGF and on the other hand by taking advantage of

certain numerical integration scheme. The asymptotic be-

havior of the SDGF is straigforwardly predicted by the

EBM, the constants related to this asymptotic behavior

turn out to be the solutions of a linear system of three

algebraic equations and the resulting tails are efficiently

computed. The technique developed m;akes it possible to

analyse with confidence a large class of coplanar trans-

mission lines including several strips or slots embedded

in a multilayered bianisotropic medium. Thus, it is pos-

sible to study from the simpler mi crostrip/microslot

embedded in a dielectric medium to the much more in-

volved asymmetric strip-like/slot-like coplanar lines

embedded in stratified gyroelectric and/or gyromagnetic

media. The method is also aware of the numerical draw-

backs related to the presence of very thlin layers.

Three facts should be emphasized regarding the con-

vergence of the propagation parameters with respect to

the basis functions employed in the expansion of the field/

current density: a) The typical Chebyshev-type basis

functions have shown to be very suitable to study the non-

reciprocal lines in case the external magnetization is as-

sumed to be on a plane perpendicular to the propagation

direction, b) The aforementioned basis functions provide

a slightly worse convergence (but mostly acceptable)

when the external magnetization has certain component

along the direction of propagation and c) This conver-

gence can become unacceptable for certain critical config-

urations when the magnetization is that of case b) and the

operation frequency is fixed within the frequency forbid-

den region.

The application of the present method to the analysis

of a microstrip with a magnetised-ferrite superstrata has

revealed the appearance of certain unidirectional magne-
tostatic modes. These modes ham been found within the

range of forbidden frequencies when the external mag-

netization is on a plane perpendicular to the direction of

propagation.

APPENDIX

Two cases are considered in the computation of expres-

sion (22):
.p=q

In this case, the integral (22) becomes

(23)

with x = (up /2)u. The integral K.~,i (x) is now rewritten

as

!-.ln(rx).lm(a) – J:(CY).I;(CY) da
Knmi(~) = —

x d

Jm.J;(ct’)J;(cY)
+ h = KJm,i(~) + K{m,t (X)j

x d

(24)

assuming the following asymptotic behavior, J:(u), of

the Bessel function of order n

Z’(.t,=gcos(a-;+.

The first integral of (24) is numerically computed follow-

ing the same s{cheme proposed for the computation of the

second and third integral appearing in expression (16).

This integral is very fastly convergent assuming the sug-

gested choice of the limit of integration u. Regarding the

second integraJ of (24), it can be expressed in terms of

the integral cosine, Ci (x), and integral sine, Si (x), func-

tions as follows

(

“((KLni(x) = ~ cos n+~+1 )7r [Ci (2x)] i+’

+ sin
(

n+m+l

2 )
7r [Si (2x)] i+’

( )]n–m
Cos —

2X
+ (25)

i(2x)i “

“p#q

Prior to dealing with this case, it should be noticed from

(22) that

Kjn~m,i = (--- 1)”+ ~ - ‘(K&~,i)*

K~Pm,i = (K~qm,i)*,

what implies that only K&~,i should be treated. The in-

tegration along the real axis kX in K~~~~,i is transformed

into an integration along the imaginary axis jk, via the
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application of the Cauchy theorem, that is

~mJn(?’x)Jm(?’x)ej.kxdk
K“ =pnqm,l

(kX)i
x

u

!
m

= je j“” ~

,mJ((u+jk)%)J~((u+jk’2)
“Jo (u + jk.)i

“e “k’ dkX (26)

with s = Cp — c~. Note that this last form of the integral

is very fastly convergent due to the presence of the neg-

ative exponential factor e–sk’.
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